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ABSTRACT
.1

A decomposition procedure is proposed in this paper for solving a
class of large scale optimal design problems for perfectly plastic structures
under several alternative loading conditions. The conventional finite
element method is used to cast the problem into a finite dimensional con-
strained nonlinear programming problem. Structures of practically meaningful
size and complexity tend to give rise to a large number of variables and
constraints in the corresponding mathematical model. The difficulty is that
the state-of-the-art Mathematical Programming theory does not provide
reliable and efficient ways of solving large scale constrained nonlinear
programming problems. The natural idea to deal with the large scale
structural problem is to somehow decompose the problem into an assembly of
small size problems each of which represents an analysis of the behavior of
each finite element under a single loading condition. This paper proposes
one such way of decomposition based on the duality theory and a recently
developed iterative algorithm.
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SIGNIFICANCE AND EXPLANATION

Many optimization and design problems arising in structural analysis are

formulated and solved as nonlinear programming problems. A variety of

formulations and accompanying solution methods have been proposed. Structures

with practically meaningful size and complexity tend to give rise to a large

number of constraints and variables in the corresponding mathematical model.

This tendency is particularly prominent when one uses the conventional Finite

Element Method, where a structure is discretized into a large number of small

"finite" elements. A major, unresolved difficulty is that the state-of-the-art

nonlinear programming theory does not provide a reliable, efficient way of

solving a programming problem with a large number of nonlinear constraints.

This paper proposes a decomposition procedure for a limit analysis of a certain

broad class of (perfectly-plastic) structures. The main benefit of this

procedure is that it allows one to solve (many) small-size nonlinear program-

ming problems, each of which corresponds to an individual finite element,

instead of having to solve the entire problem involving a potentially huge

number of constraints and variables.
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A DECOMPOSITION PROCEDURE FOR LARGE SCALE

OPTIMAL PLASTIC DESIGN PROBLEMS

Ikuyo Kaneko* and Cu Duong Ha**

1. Introduction

In this paper we shall consider an optimal design problem of perfectly

plastic structures of potentially large sizes under fairly general assumptions.

Using the conventional finite element method the structure is discretized into

an assembly of elements, and the problem is formulated as a constrained non-

linear programming problem of finite dimension. A number of ways of formulat-

ing the optimal design problem into a mathematical programming problem have

been proposed. The unresolved difficulty lies in the facts that (i) the pro-

gramming problems arising from real-world structural problems tend to have

very large sizes and (ii) the state-of-the-art Mathematical Programming theory

does not provide reliable and effective algorithms to solve large size con-

strained nonlinear problems.

Using the finite element method it is inevitable that the number of

elements becomes large (hundreds and maybe thousands) if we want to handle

engineering structures of practically meaningful size and complexity with

reasonable accuracy. In most cases, each finite element is associated with a

relatively small number of variables (generalized stresses, design variables,

etc.) and constraints (yield conditions, etc.), but because of obvious inter-

actions among elements (e.g., the overall equilibrium condition) we need to

consider all the finite elements simultaneously, resulting in a potentially

huge number of variables and constraints.
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Much research is being done in the field of Large Scale Mathemat-

ical Programming but at this point, virtually no reliable, well-tested

algorithms are available to solve optimization problems with nonlinear

constraints having more than, say, a hundred variables and constraints.

It must be pointed out that prospect is much brighter for unconstrained

minimization of a differentiable convex function (or maximization of

differentiable concave function) especially when the explicit form of

derivatives are known. In such a case, some of the most reliable and

fast algorithms (such as quasi-Newton methods) can be used to handle

large size problems in a reasonably effective manner. Of course, however,

the optimal design problems of structures do have nonlinear constraints

and thus these unconstrained techniques can not be applied, at least

directly.

These considerations lead to the following intuitive idea: Instead

of dealing with one large nonlinear program corresponding to the entire

structure, can one decompose the problem into small size programs each

of which corresponds to the analysis of the behavior of the individual

finite elements under a single loading condition and somehow combine the

results of these analyses to produce the solution to the entire structure?

We believe that this is a natural and effective approach to handle large

- .scale structural optimization problems; and in this paper we shall propose

one such approach.

The following is an informal outline of the proposed decomposition

procedure (see Section 3 for details). Our basic strategy is to solve

the problem by solving its dual. The dual problem is formulated in such

a way that it is an unconstrained maximization, with respect to the

Lagrange multipliers, of a differentiable concave function with known,

I explicit derivatives. The function to be maximized in the dual itself

-d1
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is given as a certain constrained minimization problem (called the

augmented primal problem). The augmented primal problem is the same

as the original (or primal) problem except that some of the constraints

are incorporated to the objective function through the Lagrange

multipliers. The dual problem is solved by solving the augmented

primal problem repeatedly. This augmented primal problem is decomposed,

in two stages, into eventually a collection of small size problems each

of which corresponds to a single finite element under a single loading

condition.

In the first stage of the decomposition, the augmented primal prob-

lem is decomposed into the "sun" of-minimization problems each of which

is associated with a single finite element under all the loading

conditions. In the second stage, each of these problems is partitioned

in such a way that the minimization becomes "nested"; i.e. the problem

is transformed into an "outer minimization" inside of which many "inner

minimizations" are performed. The outer minimization is (virtually) an

unconstrained problem with respect to the design variables associated

with a single finite element, while each of the inner minimizations is

a constrained minimization problem corresponding to a single finite

element under a single loading condition given fixed values of the

design variables associated with the element. We might note that the

dual problem is solved by means of a certain iterative scheme developed

recently ([1]-[2]). Figure I gives a conceptual outline of our

decomposition procedure.

The present work is motivated and inspired by the following two

papers, Thierauf [3' and Woo and Schmit [4]. Thierauf proposes an

'"k
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Dual Problem

Solve > Unconstrained NLP

[Augmented Primal Problem

lst decomposition stage

Constrained minimization
associated with a single
element and all loading
conditions

2nd decomposition stage

NestedMinimization

Outer Minimization
w.r.t. design variables

Solve Inner Minimization
single element
single loading

condition
fixed design

Fig. 1 Conceptual Outline of the Proposed Procedure



iterative scheme for perfectly plastic optimal design problem having a

linear objective function and quadratic yield conditions. His procedure

has a flavor of decomposition in the sense that in each iteration an

elastic problem is solved with respect to all the finite elements but

a single loading condition. For a general case with nonlinear objective

and yield conditions, Thierauf suggests repeated linear/quadratic

approximations in an iterative way.

The decomposition procedure proposed by Woo and Schmit is based on

a principle entirely different from ours, but similar to ours in the

sense that the problem is decomposed down to a collection of many small

size problems corresponding to a single finite element under a single

loading condition. The procedure proposed in this present paper seems

to have several advantages over that by Woo and Schmit as explained

below.

The procedure by Woo and Schmit is an application of Dantzig-Wolf

decomposition principle (Dantzig [5]) for (generalized) linear program-

ming. The linearity assumption of the cost function, therefore, is

crucial in their method while our procedure only requires convexity and

(some) separability. It is well-known ([6]) that the performance of

algorithms based on Dantzig-Wolf decomposition principle is highly

erratic. Further, the convergence of Woo-Schmit procedure is not

guaranteed unless the yield function at each element is piecewise

linear. Our procedure is guaranteed to converge under a general

convex yield function.
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Of course, this doesn't detract the importance of the pioneering

work by Woo and Schmit. In this early stage of the obviously important

research on the decomposition of large scale structional analysis, all

valid approaches must be tried and tested; and our procedure provides

one alternative. Another promising approach based on Winkler's

factorization/decomposition scheme will be proposed elsewhere by the

first author of the present paper in the near future.

The organization of the rest of this paper is as follows. In the

next section we shall specify, as a mathematical programming problem,

the structural design problem we shall consider in this paper. A

description of the proposed decomposition procedure is presented in

Section 3. In the fourth and final section we shall discuss some

significant simplifications of the proposed procedure when it is applied

to a class of certain specific problems; a numerical example and the

result of computation will also be given.

2. The Problem

The problem we shall be concerned with can be stated as that of

finding a minimal cost design for a perfectly plastic structure sub-

jected to several alternative load conditions under the overall static

equilibrium condition and the requirement that no yieldings occur.

The corresponding mathematical program looks like:

*"0

M ,
*LG



-7-

minimize wirl (yi) (1.1)

subject to
Gi (Fq,y i ) < 0 i,.,r(1.2)

Yi >  0 j:l,...,k (I.3)

lirl NFj: Pj  (1.4)

Here, yi is the vector of design variables associated with the i-th

finite element, PJ is the vector representing the j-th loading

condition, Fj is the vector of (generalized) stresses at the i-th
1

element under the j-th loading condition, wi(.) is the cost of

design Yi, (1.2) represents the yielding conditions and (1.4) denotes

the overall static equilibrium.

The framework (1), with the assumptions to be specified later in

this section, provides an idealized and simplified, yet fairly broad

perfectly plastic optimization model. We note that (1) is in almost

exactly the same form as the formulations given in Thierauf [3] and

Pape and Thierauf [7], except for some generalities allowed in (1).

In the following, we shall explain exactly what these symbols in (1)

mean and spell out the set of assumptions we shall make. Our presenta-

tion emphasizes idealized mathematical properties and requirements; the

(important) question of how valid and useful the formulation (1) is as

a structural design model is left to expositions by specialists of

structures (such as [3], [7], Pape [8] and Rozvany [9]). In particular,

we shall be tacitly making some simpliefied assumptions such as

quasistatic loading and "fixed layout".



Consider a perfectly plastic structure which is discretized into r

finite elements. The shape and nature of the elements must be chosen

depending on the particular problems and are irrelevant to our formulation.

Let Fi and yi denote, respectively, the si dimensional vector of

(generalized) stresses and the ti dimensional nonnegative vector of design

variables associated with the i-th element, i1,...,r. We assume that for

element i there are pi yield conditions each of which is determined by

a differentiable, strictly convex yield function, i=l,...,r. Thus, the

combined yield condition for the i-th element can be written as

Gi(Fi,yi) < 0, i=l,...,r, (2)

where Gi is a vector function with pi components such that each

component function is differentiable and strictly convex (jointly) in

Fi and yi. An example of Gi with pi = 1, ti = 1 is

Gi(Fiyi) = i(Fi) - Yi,

where i is a real-valued "plastic potential" function. Figure 2

depicts the yield condition (2) where pi = 2, ti = 1 and si = 2.

F2

G.l(F 2 ,yi) 0

Gi2 (Fi ,yi ) =0

Fil

Fig. 2 Piecewise differentiable yield function
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The stress vectors F1 ,...,F r for all the elements are required

to satisfy the equilibrium condition:

yirl NiF i = P, (3)

where Ni is an m by si matrix, i1,...,r, and P is an

m-vector of external nodal loads. We assume that the matrix

N = (N1 ,N21...,N r

has full row rank.

We let w(yl,... yr) denote the cost (weight, price of material,

etc.) of design and assume that w(.) is separable in yi, i.e.,

w(Yl,...,yn) = yirl wi(yi), (4)

where for each i {l,....r}, wi(.) is a real-valued, differentiable

convex function. Some degree of non-separability can be dealt with in

our model but we don't elaborate here. In most practical cases, however,

the separability seems a reasonable assumption anyway.

Following Theirauf [3] we formulate the model so that it allows

alternative loading conditions. As Thierauf points out, one can design

a structure which withstands any convex combination of given k loading

j conditions by requiring k sets of equilibrium equations. To accomo-

date this, we let m-vectors pl,p2,***, k represent the k loading

conditions, respectively, and require (in place of (3)):

lirl N i = ', i=l,. .r (51
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for each j=l,...,k, where for each i E {l,..,r} F'. is the si-vector

of stresses associated with element i under the j-th load condition.

Accordingly, we replace the yield condition (1) with

Gi(F ,Yi )  <_-O, j~l,.....k,

for each i c {I,... ,r}. The overall optimization problem is thus given

by (1). For notational simplicity we shall use the symbols y and F,

respectively, to denote the super vectors,

y = (Yl.'Yr
) and

F (1  F1  2  F2  k kF = (F1  .... F 1 .. .F F . . F . . Fr)

Finally, let us note the size of (1). The problem has

.irl (ti+ k-si) variables, k. ir Pi nonlinear and k-m linear

constraints (plus Xir, ti nonnegativity conditions). Recall that:

r = # of finite elements

m = # of overall equilibrium equations

k =# of loading conditions

ti = # of design variables for element i

si = # of stress componenets for element i; and

Pi= of yield conditions for element i.

For every i, each of ti, si and pi is relatively small. Also, k

is expected to be relatively small. The number of elements, r, is by

far the most crucial quantity in a large scale problem; it could be

hundr Js or even thousands.

* AA . . .
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3. The Decorosition Procedure

To solve the problem (1), we shall consider its dual:

maximize h(u), (6)
1 ku= (u ,u k)

where

r k T k
h(u)= min { wi(Yi)+ Y (u ) Y( NiF ii=1 j=1 i=l

Yi > 0

Gi(F YO) 0

Here, uj  is the m-vector of Lagrange multipliers associated with the

equilibrium equations under the j-th loading condition. The

(constrained) minimization on the right-hand side of (7) will be

referred to as the augmented primal problem. Note that we incorporated

only a part of the constraints to the objective function (the

Lagrangian) of the augmented primal; this manipulation will play the

key role in the decomposition process to be explained below.

If u* is the maximal solution to (6), and if (y*,F*) is the

minimal solution to the corresponding augmented primal problem in (7)

with u = u*, then the duality theory ensures that (y*,F*) is the

(global) minimal solution to the original problem (1). For this

scheme to be valid, however, we need the assurance that for each given

u, the augmented primal problem has a unique optimal solution in

(y,F); but this uniqueness is not guaranteed in our problem. To
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overcome this difficulty, we shall employ the proximal point algorithm

(Rockafellar [1]); i.e., we augment the objective function by adding

certain quadratic terms to induce "nice" properties in the augmented

primal problem, such as the uniqueness of the solution and the dif-

ferentiability of h (see below), and solve the augmented problem

iteratively, until the true solution is found. Obviously, solving

the problem iteratively is costly, but the benefit of having the nice

properties far outweighs the added complication.

More specifically, for a given vector (,F), we consider the

problem (1) where the objective function (1.1) is replaced with

r 1 r k I -FjI2

i=liljl

where X is some given positive scalar and 11.11 is the Euclidean

2-norm. Thus, instf.ad of the dual problem (6)-(7), we shall consider

maximize h(u) (8)
1 ku =(u ,u k)

with

r k k r
h(u) = min I (f( )+ I 9j(F))+ I (uJ)T( I Nm FP)} (9)

i=lj=l j=l i 1i(

Yi > 0

Gi(F',yi) < 0



-13-

where we set

fi(Yi): wi(yi) + 1 -Yi_ ill2 and (10.1)

g..(F0) - 1 IFjFi i2  (10.2)

i=l,...,r, j=l,...,k.

It must be noted that fi and gi.j are functions of ji and FP,

as well as yi and Fq, respectively, and that in fact y and

are changed from one iteration to another; but we suppress them for

notational simplicity.

Let u* be the dual optimum and let (y*,F*) be the correspond-

ing minimizer in (9). If (y*,F*) coincides with (j,F), then it

can be shown (compare (6)-(7) and (8)-(9)) that (y*,F*) is the

toptimal solution to the original problem (1). Otherwise, we replace

(yJ,F) with (y*,F*) and repeat the process. This process is

guaranteed to converge, with a reasonably good convergence rate~t

(see [2]) and computational results (see Ha [10]) have been encourag-

ing. This iterative process is the basic iteration scheme providing

the "highest echelon" loop in our decomposition procedure. The

augmented primal problem in (9) will be decomposed, in two stages,

into eventually small size problems each of which is associated with

a single structural element under a single loading condition; but we

shall first examine the properties of the augmented primal further.

Of course, in practice, we accept a solution (y*,F*) if it is
"sufficiently" close to (y,F).

t If wi(yi) is linear for each i, then the process terminates

after a finite number of iterations.

*. .... ,. . I S]
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For each u, let (y(u), F(u)) denote the unique solution of the

augmented primal problem. It can be shown (see [11]) that h(u) is

strictly concave and differentiable in u. Furthermore, the derivatives

of h(u) is known explicitly; i.e., the gradient vector of h(u) with

respect to uj  is given by

Vu h(u) = lirl Ni(u) -PJ,
Ui

where F (u) is the appropriate component of F(u) defined above. We

note that all these crucial and nice properties are the results of adding

the quadratic terms. The maximization problem (8) does have a large size

(the dimension of u is k-m); however, the facts that h(u) is

differentiable, strictly concave with known, explicit derivatives and

that the problem is unconstrained ensure that the optimization can be

performed effectively by using some of the most reliable and fast uncon-

strained nonlinear programming routines (such as a quasi-Newton method).

The first stage of the decomposition process is done by observing

that the optimization in (8) can be accomplished by solving the following

subproblem separately for each i:

k .F ) J)NFJ

minimize fi(Yi) + j(g )+(u (11 .)

subject to G-(F ,yi) 0 0, j=l,...,k (11.2)

Yi > 0. (11.3)

.' ,' :~--]
, .. . 5 : ,
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This is easy to see if we rearrange some terms in (9) and rewrite it as

r k j r k jT
h(u) = min { ( f i (y i )+ I (g i j (Fi))+ I  I (uJ)TNiFj

i=1 j=1l 3j=1

Gi(F,y i) < 0 - (uj ) P3}
i~l , .. ,~j~l, .. ,

k )p (ui)TPj  + r m {fi(Yi )+ k
Sm 1 I (q (F)+(HJ)TNi)},j=l i-l Y 0j=l

Gi (FqYi ) 0

j=l,...,k

Note that the problem (11) corresponds to a single finite element and

all k loading conditions.

The second stage of the decomposition is obtained by re-expressing

* the problem (11) as the following nested minimization (it is not

difficult to verify the validity of this "partitioning"):

k
minimize {fi(Yi)+ j vij(yi)} (12)

Yi > 0l

where

vw e= mn {gj (F4)+(uj)TNiF . (13)

Gi(F1,y) <0

Namely, (11) is solved by performing the outer minimization (12) with

respect to yi, whe'e the value of each vij(Yi) is given by solving

the following inner ninimization:
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minimize gij(Fj) + (uJ)TNtF (14.1)

subject to Gi(Fi,yi) '0. (14.2)

It can be shown (see Rockafellar [11]) that the function

1 .]fi(Yi) + 1 vi(Yid

is convex in yi. Further, under certain mild conditions (see Ha [10)

this function is differentiable in yi and an explicit form its

derivatives can be obtained. These, as well as the fact that the

dimension of yi is small, lead to an efficient minimization (using

a quasi-Newton algorithm, for example).

Now, the inner minimization, (14), is a (relatively) small size

constrained optimization problem with si variables and pi con-

straints, which corresponds to a single finite element under a single

loading condition for given values of the design variables. By

hypothesis, Gi(Fq,y i ) is differentiable and convex in Fq (for

fixed yi); the objective function is quadratic (c.f. (10)). These

properties and the smallness of the problem ensures an efficient

solution of the inner minimization.

To summarize the proposed procedure, we look at it as a "modular

computer package" consisting of several subroutines as follows.

Preparation:

Choose an initial point (y,F). Add the quadratic terms to the

objective function (as in (10)).

I ,

, ,

'--- 4
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Main Routine (Basic Iteration Scheme)

Call subroutine MAXH to solve the problem (8)-(9). Let (y*,F*) be

the optimal solution to the augmented primal problem (9) corresponding

to the optimal solution u* of (8). If II(y*,F*)- (y,F)II < P for

prescribed tolerance e > 0, then stop ((y*,F*) is optimal);

otherwise, set =y* F = F* and repeat.

Subroutine MAXH (Input: (y,F) Output: (y*,F*))

Use a quasi-Newton algorithm to solve (8)-(9); call subroutine EVAHDH

to evaluate h(u) and its derivatives needed for the algorithm.

Subroutine EVAHDH (Input: (y,F), u Output: h(u), Vh(u))

Call subroutine OUTMIN to solve (12)-(13) for each i=l,...,r; let

( F(u); , FF(u),...,F(u)) be the solution, i=,...,r. The

values of h(u) and its derivatives are given, respectively, by:

r k k T r
h(u) =il (fi(yi(u)) +~ lgi (Fi(u))) +I 1 (uj)T( N1FI(u)-PJ);"and

i j=l J=l i=l

r u
V j h(u) = F - PJ, j=l,... ,k.
u i=l

Subroutine OUTMIN (Input: ( ,F), u, i Output: (y(u), F(u)))

Solve the problem (12) for yi; call subroutine INMIN to evaluate

vi (yi), j=l,...,k.
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Subroutine INMIN (Input: F, u, i, yi, j Output: vi(yi))

Solve the problem (14).

Figure 3 shows the relationships among these subroutines.

Basic Iteration Scheme

MAXH
(Y-,F)

(y*,F*) EVAHDH

(yF) u .OUTMIN

h (u) , Vh (u)

INMIN
y F) , u, i ,I

Fqu~i 'Yi qj

vij(Yi )

Fig. 3 Summary of the Proposed Procedure
1 I ,
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4. A Special Case and an Example

The decomposition procedure was presented in the previous section

for a fairly broad class of problems. Most often, the particular

problem under consideration has many special features which lead to

some simplifications of the procedure. In this section we shall

examine one such case.

The problem we shall consider here is given by:

r
minimize wi(yi) (15.1)i=l

subject to 2-(F)TDiFii _< Yi (15.2)

Y i > 0 (15.3)1 j=l,.. .,k

NA = P3 (15.4)
i=l

where Di  is an si  by si symmetric positive definite matrix for

each iE {l,...,r}. This is the special case of the general problem

(1), where ti = pi = 1 for each i and Gi  is the real-valued

function with

Gi(FJ, yi) = 1-(Fi )T D Y i .

Namely, each finite element has a single design variable and a single,

quadratic yield condition. In this case, rather significant simplifi-

cations can be made in the proposed decomposition procedure particu-

larly with respect to solving (12)-(13).

, I L. . .
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Consider the nested minimization problem (12)-(13) (here, u is

given). Since yi is a scalar, the outer minimization is a one-

dimensional optimization, or a "line search". It can be shown (not

difficult) that the function to be minimized is differentiable and

convex where the derivative is equal to the value of optimal Lagronge

multiplier. Thus, the outer minimization can be performed extremely

efficiently by using a one-dimensional quasi-Newton algorithm. By using

other properties of vi(.), further simplifications are possible (but

not elaborated here). It turns out, also, that the inner minimization
to evaluate v ij(y) reduces to solving one (nonlinear) equation with

one unknown and so it can be performed in an extremely simple manner.

Details are described at the end of this section.

We wrote a Fortran computer code to solve an optimal design

problem of the type (15) using the proposed decomposition procedure and

the simplifications in solving (12)-(13) outlined above. We applied the

algorithm to solve a numerical example treated in Thierauf [3]

(Example 1 on p. 146) and it computed an optimal solution after 4 "outer"

iterations(Basic Iteration Scheme) and 38 quasi-Newton steps (75 function

evaluations). The solution is feasible up to the error of magnitude 10
-4

and its objective value is slightly lower than that given in Thierauf's

paper. We have solved a few other, larger size problems using the algo-

rithm also.

In the remainder of this section we shall explain how to solve

the problem (14) efficiently when the problem is given by (15). For

notational simplicity we shall write the problem as follows:

minimize lxTx - CTx (16.1)

1 Tsubject to ix Dx < a, (16.2)

. -. . ....- "7 '-.
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where x is an s-vector variable, c is a constant s-vector, D is

a constant symmetric and positive define matrix and a is a given

positive scalar. Clearly the inner minimization problem (14) for (15)

is obtained by setting

x = Fl, D = D Y
1

c -L F- (u)TtNe.

and by adding the constant .1 (Fj)Tfj to the objective of (16).

The problem is obviously feasible and is a convex program with a

strictly convex objective function; thus it has a unique minimum,

which is characterized by the Kuhn-Tucker conditions:

x - c + Dx = 0 (17.1)

TE >0, x Dx < a (17.2)

• (a-xTDx) = 0, (17.3)

where is the scalar Lagrange multiplier. Clearly, the optimal

Lagrange multiplier is zero if and only if c TDc < a; if 0 =,

then x = c is the optimal solution to (16). Thus, the first step

of the procedure to solve (16) should be to check if cTDc < a

Iholds (if so x = c is the optimum).

Suppose, now, that x = c is not feasible in (16) and so the

optimal Lagrange multiplier is strictly positive. To solve (16)

under this circumstance, we take the dual approach as we did for the

original problem (1); the dual of (16) is given by
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maximize a(d), (18)

where

a( ) mi mm 1 iTx-c TX+4-2x TDx} Cot. (19)
7x

For each fixed &, let x(&) denote the minimizer in (19). Then

it is not difficult to see that

x( ) =(I+&Df- 1c, (20)

where I is the s by s identity. Hence we have

a(C x = _ X(O () -c TX(EC) + WC() TDx(C) -Co
2E

I1 T i

-c X(W -&X

1 - T -1~(I+CD) c - Ca

As before, a(&) is differentiable concave in C and so the

dual problem (18) can be solved by obtaining a nonnegative (actually

positive) solution E to the single equation.

d [1 T -1

or

djir-0+0)i c = a.(21)

4-s
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For instance, if s = 1, then the equation (21) becomes

d c2

T (=+ED

where both c and D are scalars and thus the positive root of

equation is given byt

= + c

In a general case an alternative form of the equation (21) may

i
be obtained as follows. Let {ri:i=l,...,s} and {h :i=l,...,s} be

the sets of eigenvalues and eigenvectors, respectively, of the matrix

D. By the assumptions on D, ni is a positive scalar and hi is

i
real, for each i. It is not difficult to show that h is also an

eigenvector of the matric (I+ D)-  with the associated eigenvalue

l/(l+E i) for each i. Let v = (pl,...,js)T be the unique solution

of the system

c = Ji-l pihi; or

: [hl,...,h s Ic. (22)

Then it can be shown (not difficult) that

1 s 11i hi

x(C) = (I+CD)- c = Pi=l i

This C is positive if and only if c2D/2 > a; f cD/2 < a, or
cDc/2 < A, then x c is feasible and thus the problem Would be
solved by the "first step", i.e. the check of feasibility of x c.
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Therefore, the equation (21) becomes

This process requires the determination of all eigenvalues and eigen-

vectors of D and the matrix inversion necessary in (22). Most comput-

ing centers are equipped with computer packages to do these operations.

I
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